feature: working receive and state control

feature: echo received data
fix: too many...
todo: i2c_dump can't dump anything
This commit is contained in:
2022-12-13 13:13:15 +01:00
parent 067d0cf93c
commit a43188408e
2 changed files with 110 additions and 83 deletions

View File

@@ -48,8 +48,8 @@ SPI_HandleTypeDef hspi1;
/* USER CODE BEGIN PV */ /* USER CODE BEGIN PV */
state st = run; state st = run;
uint32_t i2c_address = 0; uint8_t cmd_buf [BUFSIZ] = {0};
uint32_t limit_address = 0; uint8_t cmd_pos = 0;
/* USER CODE END PV */ /* USER CODE END PV */
@@ -93,7 +93,7 @@ extern uint8_t CDC_Transmit_FS(uint8_t *Buf, uint16_t Len);
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE. * SOFTWARE.
* -------------------------------------------------------------------------- */ * -------------------------------------------------------------------------- */
uint8_t hex_nibble(char val) { uint8_t hex_nibble(const char val) {
if ('0' <= val && val <= '9') if ('0' <= val && val <= '9')
return val - '0'; return val - '0';
if ('a' <= val && val <= 'f') if ('a' <= val && val <= 'f')
@@ -108,16 +108,17 @@ uint8_t hex_nibble(char val) {
* Result is stored to dest * Result is stored to dest
* Return value is the number of characters processed or 0 in case of a conversion failure * Return value is the number of characters processed or 0 in case of a conversion failure
* ----------------------------------------------------------------------------------------- */ * ----------------------------------------------------------------------------------------- */
uint8_t homegrown_scanf (uint8_t *Buf, const uint32_t *Len, uint32_t *dest, const char delim) { uint8_t homegrown_scanf (uint8_t *Buf, uint8_t Len, uint32_t *dest, const char delim) {
uint8_t cursor = 0; uint8_t cursor = 0;
for (*dest = 0; Buf[cursor] != delim || cursor < *Len; cursor++) { for (*dest = 0; Buf[cursor] != delim && cursor < Len; cursor++) {
uint8_t nibble = hex_nibble(Buf[cursor]); uint8_t nibble = hex_nibble(Buf[cursor]);
if (nibble == 0xFF) { if (nibble == 0xFF) {
return(0); *dest = 0;
return(cursor + 1);
} }
*dest = *dest * 16 + nibble; *dest = *dest * 16 + nibble;
} }
return (cursor); return (cursor + 1);
} }
/* -------------------------------------------------------------------------- /* --------------------------------------------------------------------------
* convert a hex to ascii string * convert a hex to ascii string
@@ -128,19 +129,26 @@ void hex_to_ascii (const uint8_t *binary, char *str, uint16_t len) {
for (uint16_t i = 0; i < len; ++i) { for (uint16_t i = 0; i < len; ++i) {
uint8_t low = binary [i] & 0x0f; uint8_t low = binary [i] & 0x0f;
uint8_t high = binary [i] >> 4; uint8_t high = binary [i] >> 4;
str [2 * i] = (low > 0x9) ? low + '0' : low - 0xA + 'A'; str [2 * i] = (low <= 0x9) ? low + '0' : low - 0xA + 'A';
str [2 * i + 1] = (high > 0x9) ? high + '0' : high - 0xA + 'A'; str [2 * i + 1] = (high <= 0x9) ? high + '0' : high - 0xA + 'A';
} }
} }
void i2c_dump(uint16_t dev_address, uint16_t capacity) { void i2c_dump(uint16_t dev_address, uint16_t capacity) {
const uint16_t bsize = 512; char tx_buff [BUFSIZ] = {0};
char tx_buff [bsize * 2]; uint8_t read_buff [BUFSIZ / 2] = {0};
uint8_t read_buff [bsize]; for (uint16_t i = 0; i < capacity; i += BUFSIZ / 2) {
for (uint16_t i = 0; i < capacity; i += bsize) { if (HAL_I2C_Mem_Read(&hi2c1, dev_address << 1, i, capacity, read_buff, capacity, capacity / 50000) != HAL_OK) {
HAL_I2C_Mem_Read(&hi2c1, dev_address, i, capacity, read_buff, bsize, 1000); CDC_Transmit_FS((uint8_t *) "No memory on address\n\r", 22);
hex_to_ascii(read_buff, tx_buff, bsize); __HAL_RCC_I2C1_FORCE_RESET();
CDC_Transmit_FS((uint8_t *) tx_buff, bsize * 2); HAL_Delay(100);
__HAL_RCC_I2C1_RELEASE_RESET();
}
else {
hex_to_ascii(read_buff, tx_buff, capacity);
CDC_Transmit_FS((uint8_t *) tx_buff, capacity * 2);
CDC_Transmit_FS((uint8_t *) "\n\r", 2);
}
} }
} }
@@ -181,42 +189,119 @@ int main(void)
MX_USB_DEVICE_Init(); MX_USB_DEVICE_Init();
/* USER CODE BEGIN 2 */ /* USER CODE BEGIN 2 */
char error_msg[] = "Invalid command!\n"; char error_msg[] = "Invalid command!\n\r";
uint32_t i2c_address = 0;
uint32_t limit_address = 0;
__HAL_RCC_I2C1_FORCE_RESET();
HAL_Delay(100);
__HAL_RCC_I2C1_RELEASE_RESET();
HAL_GPIO_WritePin(ARST_GPIO_Port, ARST_Pin, 0);
HAL_Delay(100);
HAL_GPIO_WritePin(ARST_GPIO_Port, ARST_Pin, 1);
/* USER CODE END 2 */ /* USER CODE END 2 */
/* Infinite loop */ /* Infinite loop */
/* USER CODE BEGIN WHILE */ /* USER CODE BEGIN WHILE */
while (1) { while (1) {
HAL_Delay(100); HAL_Delay(100);
//if received \r start decoding state
if (cmd_buf[cmd_pos - 1] == '\r') {
// receive the command, set state
if (cmd_buf[0] == 'r') {
switch (cmd_buf[1]) {
case 'i':
st = read_i2c;
break;
case 's':
st = read_spi;
break;
case '2':
st = read_d28;
break;
case '3':
st = read_d32;
break;
default:
st = invalid;
}
}
else if (cmd_buf[0] == 'w') {
switch (cmd_buf[1]) {
case 'i':
st = write_i2c;
break;
case 's':
st = write_spi;
break;
case '2':
st = write_d28;
break;
case '3':
st = write_d32;
break;
default:
st = invalid;
}
}
else {
st = invalid;
}
// receive optional i2c address and limit address
uint8_t cursor = 3; // 3 = 2 for the command, 1 for a separator
cmd_pos -= cursor - 1;
if (st == write_i2c || st == read_i2c) {
cursor += (homegrown_scanf(cmd_buf + cursor, cmd_pos, &i2c_address, ' '));
if (i2c_address == 0) {
st = invalid;
}
cmd_pos -= cursor - 1;
}
homegrown_scanf(cmd_buf + cursor, cmd_pos, &limit_address, '\r');
if (limit_address == 0) {
st = invalid;
}
//reset cmd_buf and cmd_pos
memset(cmd_buf, 0, BUFSIZ);
cmd_pos = 0;
}
switch (st) { switch (st) {
case read_i2c: case read_i2c:
i2c_dump(i2c_address, limit_address); i2c_dump(i2c_address, limit_address);
i2c_address = 0;
limit_address = 0;
st = run; st = run;
break; break;
case read_spi: case read_spi:
limit_address = 0;
st = run; st = run;
break; break;
case read_d28: case read_d28:
limit_address = 0;
st = run; st = run;
break; break;
case read_d32: case read_d32:
limit_address = 0;
st = run; st = run;
break; break;
case write_i2c: case write_i2c:
limit_address = 0;
st = run; st = run;
break; break;
case write_spi: case write_spi:
limit_address = 0;
st = run; st = run;
break; break;
case write_d28: case write_d28:
limit_address = 0;
st = run; st = run;
break; break;
case write_d32: case write_d32:
limit_address = 0;
st = run; st = run;
break; break;
case invalid: case invalid:
CDC_Transmit_FS( (uint8_t *) error_msg, strlen(error_msg)); CDC_Transmit_FS( (uint8_t *) error_msg, strlen(error_msg));
st = run;
default: default:
continue; continue;
} }

View File

@@ -31,9 +31,11 @@
/* USER CODE BEGIN PV */ /* USER CODE BEGIN PV */
/* Private variables ---------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/
extern state st; extern state st;
extern uint32_t i2c_address; extern uint8_t cmd_buf [BUFSIZ];
extern uint32_t limit_address; extern uint8_t cmd_pos;
/* USER CODE END PV */ /* USER CODE END PV */
/** @addtogroup STM32_USB_OTG_DEVICE_LIBRARY /** @addtogroup STM32_USB_OTG_DEVICE_LIBRARY
@@ -112,10 +114,6 @@ extern USBD_HandleTypeDef hUsbDeviceFS;
/* USER CODE BEGIN EXPORTED_VARIABLES */ /* USER CODE BEGIN EXPORTED_VARIABLES */
extern uint8_t hex_nibble(char val);
extern uint8_t homegrown_scanf (uint8_t *Buf, const uint32_t *Len, uint32_t *dest, char delim);
/* USER CODE END EXPORTED_VARIABLES */ /* USER CODE END EXPORTED_VARIABLES */
/** /**
@@ -267,66 +265,10 @@ static int8_t CDC_Receive_FS(uint8_t* Buf, uint32_t *Len)
/* USER CODE BEGIN 6 */ /* USER CODE BEGIN 6 */
USBD_CDC_SetRxBuffer(&hUsbDeviceFS, &Buf[0]); USBD_CDC_SetRxBuffer(&hUsbDeviceFS, &Buf[0]);
USBD_CDC_ReceivePacket(&hUsbDeviceFS); USBD_CDC_ReceivePacket(&hUsbDeviceFS);
CDC_Transmit_FS(Buf, *Len);
if (st == run) { if (st == run) {
// receive the command, set state memcpy(cmd_buf + cmd_pos, Buf, (*Len > BUFSIZ - cmd_pos) ? BUFSIZ - cmd_pos : *Len );
if (Buf[0] == 'r') { cmd_pos += (*Len > BUFSIZ - cmd_pos) ? BUFSIZ - cmd_pos : *Len;
switch (Buf[1]) {
case 'i':
st = read_i2c;
break;
case 's':
st = read_spi;
break;
case '2':
st = read_d28;
break;
case '3':
st = read_d32;
break;
default:
st = invalid;
return (USBD_OK);
}
}
else if (Buf[0] == 'w') {
switch (Buf[1]) {
case 'i':
st = write_i2c;
break;
case 's':
st = write_spi;
break;
case '2':
st = write_d28;
break;
case '3':
st = write_d32;
break;
default:
st = invalid;
return (USBD_OK);
}
}
else {
st = invalid;
return (USBD_OK);
}
// receive optional i2c address and limit address
uint8_t cursor = 3; // 3 = 2 for the command, 1 for a separator
*Len -= cursor;
if (st == write_i2c || st == read_i2c) {
cursor += homegrown_scanf(Buf + cursor, Len, &i2c_address, ' ') + 1; // + 1 for the delimiter
if (i2c_address == 0) {
st = invalid;
return (USBD_OK);
}
*Len -= cursor;
}
homegrown_scanf(Buf + cursor, Len, &limit_address, '\n');
if (limit_address == 0) {
st = invalid;
return (USBD_OK);
}
} }
return (USBD_OK); return (USBD_OK);
/* USER CODE END 6 */ /* USER CODE END 6 */