feat: detection on training sets, works with great accuracy

This commit is contained in:
2024-10-06 01:23:41 +02:00
parent 47a63dbd1a
commit 90d93b87a5
2 changed files with 76 additions and 0 deletions

36
create_matched_filter.py Normal file
View File

@@ -0,0 +1,36 @@
"""Create the matched filter for correlational detection"""
from datetime import datetime
import numpy as np
import matplotlib.pyplot as plt
from bisect_moonquake import CAT_LUNAR, PREPROCESSED_LUNAR_DIR, from_mseed
FILTER_SHAPE = [46376 // 3 + 1,] # I want it that way
def create_matched_filter():
matched_filter = np.zeros(FILTER_SHAPE, 'O')
type_collection = CAT_LUNAR
for row in type_collection.iloc:
arrival_time = datetime.strptime(row['time_abs(%Y-%m-%dT%H:%M:%S.%f)'],'%Y-%m-%dT%H:%M:%S.%f')
sample_filename = row.filename + "_trimmed_7000_sec"
try:
st, _ = from_mseed(sample_filename, PREPROCESSED_LUNAR_DIR, arrival_time)
except FileNotFoundError:
# Because csv is faulty...
sample_filename = sample_filename.replace('HR00', 'HR02')
st, _ = from_mseed(sample_filename, PREPROCESSED_LUNAR_DIR, arrival_time)
st.traces[0].data *= 1 / st.traces[0].data.max()
st.traces[0].decimate(3)
try:
matched_filter += st.traces[0].data
except:
# print(st.traces[0].data.shape)
pass
# # Plot trace
# fig,ax = plt.subplots(1,1,figsize=(10,3))
# ax.plot(matched_filter)
# plt.show()
return matched_filter
if __name__ == "__main__":
create_matched_filter()

40
detect_moonquakes.py Normal file
View File

@@ -0,0 +1,40 @@
import os
from scipy.signal import correlate
from bisect_moonquake import CAT_LUNAR, LUNAR_DATA_DIR, PREPROCESSED_LUNAR_DIR, from_mseed
from datetime import datetime
import create_matched_filter
import matplotlib.pyplot as plt
from pathlib import Path
from tqdm import tqdm
IMGDIR = "./images"
def main():
matched_filter = create_matched_filter.create_matched_filter()
outfolder = Path(IMGDIR + "/lunar/training/")
outfolder.mkdir(parents=True, exist_ok=True)
for row in tqdm(CAT_LUNAR.iloc):
arrival_time = datetime.strptime(row['time_abs(%Y-%m-%dT%H:%M:%S.%f)'],'%Y-%m-%dT%H:%M:%S.%f')
test_filename = row.filename
try:
st, arrival = from_mseed(test_filename, LUNAR_DATA_DIR, arrival_time)
except FileNotFoundError:
# Because csv is faulty...
test_filename = test_filename.replace('HR00', 'HR02')
st, arrival = from_mseed(test_filename, LUNAR_DATA_DIR, arrival_time)
st.traces[0].data *= 1 / st.traces[0].data.max()
st.traces[0].decimate(3)
likelyhood = correlate(st.traces[0].data, matched_filter, mode='same')
estimated_arrival = (likelyhood.argmax() - matched_filter.shape[0] / 2) * st.traces[0].stats.delta
print(arrival - estimated_arrival)
# Plot trace
outfile = outfolder.joinpath(test_filename + "_correlation.svg")
fig,ax = plt.subplots(1,1,figsize=(10,3))
ax.plot(st.traces[0].times(), likelyhood)
ax.axvline(x = arrival, color='red',label='Rel. Arrival')
ax.axvline(x = estimated_arrival, color='green',label='Est. Arrival')
# plt.show()
plt.savefig(outfile)
if __name__ == "__main__":
main()